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Abstract

Data from direct numerical simulations (DNS) of constant sur-
face heat-flux in fully-developed turbulent pipe and channel
flows is used to explore the physical mechanisms of turbulent
heat transfer. The analysis employs a theory based on the mag-
nitude ordering of terms in the mean thermal energy equationof
wall-bounded turbulent heat transfer, Weiet al. [10]. Identify-
ing the leading order terms in the mean energy equation reveals
a four layer structure similar to that found for the mean momen-
tum equation. The traditional inner scale is then transformed
into new inner length and then the invariant form admitted by
the relevant form of the mean energy equation is determined.
These apply to inner, outer and intermediate regions of the flow,
whose properties are dependent on a small parameter that is a
function of Peclet number. Existing and new DNS data of tur-
bulent heat transfer for both channel and pipe flow are shown
to support the scalings derived from the theory. The analysis
reveals that the balance breaking and exchange of terms in the
mean energy equation that occurs across the intermediate meso-
layer is similar to that in the mean momentum equation.

Introduction

Wall-bounded turbulent flows are present in a large number of
industrial and technological applications which involve heat and
mass transport. Thus, it is important to understand the proper
scaling of the thermal transport in order to accurately represent
the effect of the governing parameters on the thermal field statis-
tics. In this regard, recent analyses of the mean momentum
equation have been used to explore the underlying physics and
scaling of turbulent wall-flows. Weiet al. [11] introduced a
generic first-principles framework, an extension of which leads
to a mesoscaling of Reynolds shear stress (Weiet al. [12]) and
mean velocity field (Weiet al. [13]) in turbulent channel and
pipe flows. Existing DNS data were shown to be consistent
with this mesoscaling over a spatial domain extending from at
least the lower boundary of the mesolayer (layer III herein)to
the centerline.

Traditional representations of temperature and turbulentheat
flux profiles generally employs either inner or outer normaliza-
tions. These normalizations, however, fail to provide invariant
profiles as the relevant non-dimensional parameters are varied.
Under inner normalization, the mean temperature is normalised
by the so-called friction temperature (defined later) and the wall
distance is normalised by the friction velocityuτ and the kine-
matic viscosityν. This normalization, however, is only relevant
over a small region near the wall that encompasses the con-
ductive sublayer (y+ ≈ 5)[3]. Moreover, the logarithmic layer
data exhibit different mean temperature profiles as a function of
both Reynolds and Prandtl numbers. The existence of this richer
range of phenomena from the momentum case essentially arises
from the extra parameter, Peclet number (product of Reynolds
and Prandtl number) in the mean energy equation.

The mean energy balance equation is governed by the balance
between the molecular diffusion, turbulent transport and mean
streamwise advection. According to the present theory, thetran-
sition from inner to outer scaling physically takes place owing a
balance breaking and exchange of these mechanisms as a func-
tion of scale. This underlies the existence of an intermediate re-
gion between inner and outer layers (thermal mesolayer) where,
in the mean, all these three terms are nearly in balance, Weiet
al. [10]. Similarly, by assuming the existence of overlap layers
Seenaet al. [9] construct a closure model that leads to profiles
for mean temperature and turbulent heat fluxes. The present
framework only relies on the magnitude ordering of the termsin
the mean energy equation, and thus does not invoke additional
assumption or resort to the use of a closure model.

Numerical Procedures and Data Sets

The numerical scheme used for obtaining DNS data of turbulent
flow and heat transfer in a pipe is detailed in Sahaet al.[8]. The
numerical algorithm is based on a cylindrical coordinate spec-
tral element/Fourier spatial discretisation [1]. A good number
of checks have been carried out to ensure enough resolution and
the validity of the present dataset. The onset of the four layer
structure for hydrodynamic flow fields of both pipe and channel
occurs at aboutReτ = 180 (Klewicki et al. [6] and Elsnabet
al. [2]) and hence, the selection of the present data sets ensures
the existence of a nascent four layer regime for the momentum
field. Table 1 shows the present list of DNS datasets for both
pipe and channel flow. High resolution DNS data of turbulent
heat transfer in channel is extracted from Kawamura’s group
(Kawamuraet al. [4, 5] and Kozukaet al. [7]).

Reτ Pr Peτ Channel Pipe
180 0.025 4.5 � ∀

180 0.05 9.0 H ⋆

180 0.1 18 � N

180 0.2 36 ◦ ∅

180 0.4 72 ⊗ ^

180 0.6 108 Θ �

180 0.71 127.8 ⊕ Ψ

180 1.0 180 χ ⊳

180 2.0 360 ♣ $
180 5.0 900 • ⊲

180 7.0 1260 � ♠

395 0.025 9.875 � ©

395 0.71 280.45 ® ▽

Table 1: DNS database for Turbulent Heat Transfer in Pipe and
Channel flow. The symbols for channel and pipe flow of each
condition are used as legends for the subsequent figures.

Mean Thermal Energy Balance Framework

The conventional form of outer normalised Reynolds averaged



energy balance equation is found by using the pipe radius or
channel half heightδ to normalise the wall distanceη = y/δ.
This gives

σ2 d2Θ+

dη2
+

dΥ+

dη
+R (η) = 0, (1)

whereΘ+ is the non-dimensional mean temperature normal-
ized by the friction temperatureΘτ = qw/ρCpuτ, qw is the
heat flux applied on the pipe or channel outer walls,ρ is the
mass density,Cp is the specific heat,uτ is the friction ve-
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for pipe flow and

R(η) = U(η)/Ub for channel flow,Ub is the bulk mean veloc-
ity, Υ+ = 〈−v+θ+〉 is the turbulent radial heat flux and the small
parameterσ is defined by

σ =

√

1
Peτ
=

√

1
Prδ+

, (2)

wherePr is the Prandtl number and the wall Reynolds num-
ber isReτ or δ+ = uτδ/ν, also called the inner normalised pipe
radius or channel half height. Equation (1) implies a fully de-
veloped thermal field hence there is no dependence on axial di-
rection. This equation is valid for both pipe and channel flows.
At sufficiently high Peτ, R(η) is O(1) for all values ofη ex-
cept in the region interior to the peak in the turbulent heat flux
profile. Equation (1) also expresses a balance between mean
streamwise advection and turbulent transport flux gradientfor
sufficiently small values ofσ2.

The conventional inner scaled mean energy equation for fully
developed wall bounded turbulent heat transfer is

1
Pr

d2Θ+

dy+2
+

dΥ+

dy+
+R
(

y+
)

= 0, (3)

wherey+ = yuτ/µ is the inner-normalised wall-normal distance
andµ the kinematic viscosity.

Based upon the mean momentum equation analysis of Weiet
al. [11], we propose an alternative form of the inner normalised
energy equation. This form employs a new inner variable pa-
rameter,yσ = η/σ2, which follows from the work of Weiet al.
[10]. This yields a new “inner” form for the mean energy bal-
ance equation:

d2Θ+

dyσ2
+

dΥ+

dyσ
+σ2Rσ (yσ) = 0, (4)

with boundary conditions,Θ+ = 0, dΘ+/dyσ = 1 at yσ = 0.
Physically,yσ reflects the scale separation associated with in-
creasing Peclet number. For large Peclet number, equation (4)
indicates a balance between the molecular diffusion flux gradi-
ent and the turbulent transport flux gradient.

Traditional Scaling Analysis of Heat Transfer

The conventional way of presenting turbulence statisticalpro-
files uses a combination of inner- and outer-normalisations. Fig-
ures 1 and 2 show the inner and outer-normalised turbulent ra-
dial heat flux profiles. Existing (channel) and present (pipe)
data reveal that the traditional inner normalisation failsto yield
an invariant profiles for varying Reynolds and Prandtl numbers
over more a couple ofy+ units from the wall. Traditional outer
normalization, however, yields a might tighter clusteringof the
turbulent radial heat flux profiles over an outer domain that ex-
tends from the centerline inward forPeτ ≥ 72. Neither of these
normalizations yields an invariant profile in the vicinity of the
peak radial heat flux. It is also apparent from figure 1 that the
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Figure 1: Traditional inner scaling of turbulent heat flux.
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Figure 2: Traditional outer scaling of turbulent heat flux.

inner normalised maximum turbulent radial heat flux location
moves outward with increasing Peclet number, while the outer
normalized peak location moves inward (figure 2).

At large Peclet number, when the value ofσ2 becomes very
small andR(η) is O(1), theO(σ2) term in the outer normalised
mean energy balance may be neglected. This leaves

dΥ+

dη
+R (η) = 0. (5)

Integrating and using the boundary condition yields

Υ (η) = −

η
∫

1

R (η)dη = 1−η, (6)

indicating a linear variation of turbulent radial heat flux inde-
pendent of Peclet number. This condition is satisfies in the do-
main where, according to equation (5), the mean streamwise
advection and turbulent transport flux gradient are nominally
in balance. It is important to note that the peak values of the
profiles of figure 2 increases and apparently approaches unity
with increasing Peclet number. It is also apparent that at com-
parable parameter values the pipe and channel flow profiles are
convincingly the same.
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Figure 3: Traditional inner scaling of mean temperature.
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Figure 4: Traditional outer scaling of mean temperature.

Like the turbulent heat flux profiles, the mean temperature pro-
files fail to coincide under inner-normalisation, except very near
the wall (figure 3). Again, this may be traced back to their de-
pendence on both Reynolds and Prandtl numbers. Traditionally,
four different thermal wall layers are identified by Kader [3]:
the molecular transport sublayer, the buffer layer, the logarith-
mic layer and the outer layer. Apart from a wall-normal narrow
range within the molecular sublayer, the mean temperature pro-
files do not show any well-defined trends. One of the reasons is
that the normalisation parameter does not include the effect of
Prandtl number explicitly. Interestingly, there exists a distinct
difference between the pipe and channel flow temperature pro-
files from the logarithmic layer at higher Peclet numbers. On
the other hand, the data of figure 4 suggest an invariant outer-
normalized temperature profile forη > 0.5.

Mesoscaling Analysis of Heat Transfer

The new inner scaled mean energy balance (equation (4)) at
large Peclet number (smallσ2) indicates that the leading or-
der balance is between molecular diffusion and mean advection.
Near the location of the peak turbulent heat flux, however, all
three of the terms in equation (4) have the same order of mag-
nitude. This is similar to the property exhibited by the mean
momentum equation (see, Weiet al.[11]), indicating that a four
layer structure is also applicable to the mean energy equation.
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Figure 5: Mesoscaling of turbulent heat flux.

















                                        

♣♣
♣♣
♣♣
♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣
♣
♣
♣♣
♣♣
♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

χχ
χχ
χχ
χχ
χχ
χχ
χχ
χχ
χχ
χχ

χχχχχχχχχχχχχχχχχχχχχχχχχχχχχχ

⊕ ⊕
⊕
⊕⊕
⊕
⊕⊕
⊕⊕
⊕
⊕
⊕⊕
⊕⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
ΘΘ
Θ
Θ
Θ
Θ
Θ
Θ
ΘΘ

ΘΘΘΘΘΘΘΘΘΘΘΘΘ
Θ

Θ
Θ

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗

⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗

⊗
⊗

⊗
⊗

⊗
⊗



♠
♠♠♠

♠
♠

♠♠♠
♠♠

♠
♠

♠
♠♠♠

♠♠
♠

♠
♠

♠
♠♠♠

♠♠♠
♠

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠
♠
♠
♠
♠♠
♠
♠
♠

♠

♠

♠

♠
♠
♠
♠
♠
♠
♠
♠
♠♠♠♠

$$$
$

$
$

$
$

$
$

$
$

$
$$

$$$$
$$

$$$$
$$

$
$

$$$
$$$$$$$

$
$
$
$
$
$

$
$
$
$

$
$
$
$
$
$
$
$
$
$$

Ψ
ΨΨΨΨΨ

Ψ
Ψ

Ψ
Ψ

Ψ
Ψ

Ψ
ΨΨΨΨΨΨΨΨ

Ψ
Ψ
Ψ
Ψ
Ψ
Ψ
Ψ
Ψ
Ψ
Ψ
Ψ
Ψ
ΨΨ

∅∅∅∅∅∅∅∅∅∅∅∅
∅

∅
∅
∅
∅

∀∀∀∀∀

σyσ

(ϒ
+
-1

)/
σ

-5 0 5 10 15 20 25 30 35 40
-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 6: Approximate mesoscaling of turbulent heat flux.

The goal now is to rescale equation (4) such that all the terms
are formallyO(1) in layer III. Following Weiet al.[11], a suc-
cessful rescaling will take the form

ŷσ = σ(yσ− yσm), Υ̂ = (1/σ)(Υ+−Υ+m), (7)

whereyσm andΥ+m are the peak turbulent radial heat flux loca-
tion and value, respectively. Normalization of the mean energy
equation according to these variables results in

d2Θ+

dŷ2
σ

+
dΥ̂
dŷσ
+1= 0. (8)

The desired invariant form is attained, as all of the normalized
terms are formallyO(1). Note that similar to the mean mo-
mentum equation, it is not necessary to rescale the mean tem-
perature to attain an invariant form that reflects the true mag-
nitude ordering of terms. Note also thatdΥ+/dη is identically
equal todΥ̂/dŷσ, and thus the meso equation (8) transparently
matches the outer equation (1). This indicates that the mesoscal-
ing should be appropriate for the turbulent radial heat flux data
into the outer region as well. Figure 5 shows the mesoscaled
turbulent radial heat flux profiles. All of the profiles collapse
onto a single curve under the coordinate stretching produced by
the meso-variables ˆyσ andΥ̂. This scaling for turbulent radial
heat flux is apparently valid over an interior region the extends
from inside the peak inΥ+ to a zone near the centerline. In
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Figure 7: Mesoscaling of normalised mean temperature.

general, the theory indicates that this scaling should be valid in
a domain surroundingyσm(ŷσ = 0, Υ̂ = 0) having an extent of
∆ŷσ = O(1). As noted previously, however, this scaling natu-
rally melds with outer scaling, and thus in these coordinates it
is analytically predicted to extend to the centerline. Within the
mesoscaling domain, no significant differences between pipe
and channel flow data are observed. For the present data sets,
this domain extends from 10< ŷσ < 32. The indicate scaling
does not hold in a narrow region near the wall. This is where
the scaling patch affiliated with inner length is known to hold.
This behaviour is also similar to the mesoscaling of Reynolds
shear stress as explained by Weiet al.[12].

In order to evaluate the mesoscaled variables ˆyσ and Υ̂, one
should require prior knowledge of the maximum turbulent ra-
dial heat flux value and its location. Due to the limitation of
precisely determining the value ofyσm andΥ+m, Wei et al.[12]
proposed an alternative approach to express the ‘approximate’
mesoscaling behaviour. This scaling is based upon the limiting
behaviours ofyσm andΥ+m which can be estimated for suffi-
ciently high Peclet number as follows

yσm = O(1/σ),Υ+m = 1−O(σ), (9)

and equation (7) then yields

ŷσ = σyσ −O(1), Υ̂ = (1/σ)(Υ+−1)+O(1). (10)

Thus an approximate mesoscaling can be constructed by plot-
ting (Υ+ − 1)/σ versusσyσ, without necessarily knowing the
value ofyσm andΥ+m. As shown in figure 6, the turbulent heat
flux profiles nominally merge to a single curve, particularlyfor
the higher Peclet number. This approximate scaling is expected
to improve with increasing Peclet number. Like the heat flux
profile, the mesoscaled mean temperature profiles convincingly
support the theory, as the profiles of figure 7 increasingly col-
lapse onto a single curve with increasing Peclet number.

Conclusions

The mesoscaling analysis of turbulent heat transfer has been
successfully validated using existing DNS data. The present
methodology scaled the radial heat flux, and the mean temper-
ature over a considerable domain centered about the peak heat
flux location. The present framework is analogous to that used
for the Reynolds shear stress by Weiet al.[12], and also rein-
forces their earlier findings for the turbulent heat flux, [11] . The
present analyses also suggests that, at high Peclet number,the

scaling characteristics of the temperature field become increas-
ingly similar to those of the momentum field at high Reynolds
number.
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