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Abstract The mean energy balance equation is governed by the balance
between the molecular filision, turbulent transport and mean
streamwise advection. According to the present theorytrtime

sition from inner to outer scaling physically takes placerma
balance breaking and exchange of these mechanisms as a func-
tion of scale. This underlies the existence of an interntedia

gion between inner and outer layers (thermal mesolayerjayhe

in the mean, all these three terms are nearly in balanceg\Wei

al. [10]. Similarly, by assuming the existence of overlap layer
Seeneaet al. [9] construct a closure model that leads to profiles
for mean temperature and turbulent heat fluxes. The present
framework only relies on the magnitude ordering of the terms

the mean energy equation, and thus does not invoke additiona
assumption or resort to the use of a closure model.

Data from direct numerical simulations (DNS) of constant su
face heat-flux in fully-developed turbulent pipe and channe
flows is used to explore the physical mechanisms of turbulent
heat transfer. The analysis employs a theory based on the mag
nitude ordering of terms in the mean thermal energy equafion
wall-bounded turbulent heat transfer, Véeial. [10]. Identify-

ing the leading order terms in the mean energy equation Isevea

a four layer structure similar to that found for the mean mome
tum equation. The traditional inner scale is then transéatrm
into new inner length and then the invariant form admitted by
the relevant form of the mean energy equation is determined.
These apply to inner, outer and intermediate regions of the fl
whose properties are dependent on a small parameter that is a
function of Peclet number. Existing and new DNS data of tur-
bulent heat transfer for both channel and pipe flow are shown
to support the scalings derived from the theory. The amglysi  The numerical scheme used for obtaining DNS data of turbbulen
reveals that the balance breaking and exchange of termgin th flow and heat transfer in a pipe is detailed in Sehal.[8]. The
mean energy equation that occurs across the intermediat®me  numerical algorithm is based on a cylindrical coordinatecsp

Numerical Procedures and Data Sets

layer is similar to that in the mean momentum equation. tral elemenfFourier spatial discretisation [1]. A good number
of checks have been carried out to ensure enough resolutibn a
Introduction the validity of the present dataset. The onset of the fougerlay

structure for hydrodynamic flow fields of both pipe and channe
occurs at abouRe; = 180 (Klewicki et al. [6] and Elsnabet

al. [2]) and hence, the selection of the present data sets ensure
the existence of a nascent four layer regime for the momentum
field. Table 1 shows the present list of DNS datasets for both
pipe and channel flow. High resolution DNS data of turbulent
heat transfer in channel is extracted from Kawamura’s group
(Kawamuraet al. [4, 5] and Kozukaet al. [7]).

Wall-bounded turbulent flows are present in a large number of
industrial and technological applications which invoheahand
mass transport. Thus, it is important to understand thegsrop
scaling of the thermal transport in order to accuratelyesent

the dfect of the governing parameters on the thermal field statis-
tics. In this regard, recent analyses of the mean momentum
equation have been used to explore the underlying physits an
scaling of turbulent wall-flows. Wegt al. [11] introduced a
generic first-principles framework, an extension of whieads

to a mesoscaling of Reynolds shear stress @vai. [12]) and Re. | Pr Per | Channd | Pipe
mean velocity field (Wegt al. [13]) in turbulent channel and 180 | 0.025 4.5 o v
pipe flows. Existing DNS data were shown to be consistent 180 | 0.05 9.0 v *
with this mesoscaling over a spatial domain extending from a 180 | 0.1 18 « A
least the lower boundary of the mesolayer (layer Il heréin) 180 | 0.2 36 © @
the centerline. 180 | 0.4 72 ® ©
180 | 0.6 108 (C] [
Traditional representations of temperature and turbutesatt 180 | 0.71 | 127.8 ® g
flux profiles generally employs either inner or outer normeai 180 | 1.0 180 X <
tions. These normalizations, however, fail to provide iraat 180 2.0 360 * $
profiles as the relevant non-dimensional parameters aredvar 180 | 5.0 900 . >
Under inner normalization, the mean temperature is nosedli 180 7.0 1260 ¢ .
by the so-called friction temperature (defined later) ardrhll 395 | 0.025| 9.875 > ©
distance is normalised by the friction velocity and the kine- 395 | 0.71 | 280.45 ® v

matic viscosityv. This normalization, however, is only relevant

over a small region near the wall that encompasses the con- Table 1: DNS database for Turbulent Heat Transfer in Pipe and
ductive sublayeryt ~ 5)[3]. Moreover, the logarithmic layer Channel flow. The symbols for channel and pipe flow of each
data exhibit diferent mean temperature profiles as a function of  condition are used as legends for the subsequent figures.

both Reynolds and Prandtl numbers. The existence of thisiric
range of phenomena from the momentum case essentiallg arise
from the extra parameter, Peclet number (product of Regnold
and Prandtl number) in the mean energy equation. The conventional form of outer normalised Reynolds avetage

Mean Thermal Energy Balance Framework



energy balance equation is found by using the pipe radius or
channel half height to normalise the wall distance = y/é.
This gives
,d?e* drt
_ + —_
dn? dn

where®* is the non-dimensional mean temperature normal-
ized by the friction temperatur®, = ow/pCplU,, Ow is the
heat flux applied on the pipe or channel outer wallss the
mass densityCp is the specific heaty, is the friction ve-

+R(7) =0, )

1-n
locity, R(n) = & [ﬁ [ -1Uudy- u] for pipe flow and
1

R(n) = U(n)/Uyp for channel flow,Uy, is the bulk mean veloc-
ity, T+ = (-=v*6") is the turbulent radial heat flux and the small
parameterr is defined by

1 [ 1

7=\ pe = \VPro+
where Pr is the Prandtl number and the wall Reynolds num-
ber isRe; or §* = u;6/v, also called the inner normalised pipe
radius or channel half height. Equation (1) implies a fules d
veloped thermal field hence there is ho dependence on axial di
rection. This equation is valid for both pipe and channel §ow
At sufficiently high Pe;, R(y) is O(1) for all values ofn ex-
cept in the region interior to the peak in the turbulent haat fl
profile. Equation (1) also expresses a balance between mean
streamwise advection and turbulent transport flux gradiemt
suficiently small values of-2.

@)

The conventional inner scaled mean energy equation foy full
developed wall bounded turbulent heat transfer is

1 d%e*
Pr dy+2

dar*
dy*

wherey* = yu,/u is the inner-normalised wall-normal distance
andu the kinematic viscosity.

+

+R(y") =0, (3)

Based upon the mean momentum equation analysis ofeiVei
al. [11], we propose an alternative form of the inner normalised
energy equation. This form employs a new inner variable pa-
rametery, = 77/0'2, which follows from the work of Weét al.

[10]. This yields a new “inner” form for the mean energy bal-
ance equation:

d?e+
—s +
dy-?

dy*

2 —
o +0°Rs (Vo) =0,

(4)

with boundary conditions@* = 0, d®*/dy, = 1 aty, = 0.
Physically,y, reflects the scale separation associated with in-
creasing Peclet number. For large Peclet number, equatjon (
indicates a balance between the moleculéiudion flux gradi-
ent and the turbulent transport flux gradient.

Traditional Scaling Analysis of Heat Transfer

The conventional way of presenting turbulence statisticat
files uses a combination of inner- and outer-normalisatibigs
ures 1 and 2 show the inner and outer-normalised turbulent ra
dial heat flux profiles. Existing (channel) and present (pipe
data reveal that the traditional inner normalisation failgield

an invariant profiles for varying Reynolds and Prandtl nurabe
over more a couple oft units from the wall. Traditional outer
normalization, however, yields a might tighter clusteraighe
turbulent radial heat flux profiles over an outer domain tiat e
tends from the centerline inward f@e,; > 72. Neither of these
normalizations yields an invariant profile in the vicinitf the
peak radial heat flux. It is also apparent from figure 1 that the
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Figure 2: Traditional outer scaling of turbulent heat flux.

inner normalised maximum turbulent radial heat flux loaatio
moves outward with increasing Peclet number, while theroute
normalized peak location moves inward (figure 2).

At large Peclet number, when the value ®f becomes very
small andR() is O(1), theO(c2) term in the outer normalised
mean energy balance may be neglected. This leaves

T+
g +R(n) =0. (5)
Ul
Integrating and using the boundary condition yields
Yl
1) =~ [ Rupdy=1-n, ©)
1

indicating a linear variation of turbulent radial heat flusde-
pendent of Peclet number. This condition is satisfies in the d
main where, according to equation (5), the mean streamwise
advection and turbulent transport flux gradient are norfyinal

in balance. It is important to note that the peak values of the
profiles of figure 2 increases and apparently approacheg unit
with increasing Peclet number. It is also apparent that at-co
parable parameter values the pipe and channel flow profiées ar
convincingly the same.
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Figure 4: Traditional outer scaling of mean temperature.

Like the turbulent heat flux profiles, the mean temperatuoe pr
files fail to coincide under inner-normalisation, excepivgear

the wall (figure 3). Again, this may be traced back to their de-
pendence on both Reynolds and Prandtl numbers. Traditypnal
four different thermal wall layers are identified by Kader [3]:
the molecular transport sublayer, thefflen layer, the logarith-
mic layer and the outer layer. Apart from a wall-normal narro
range within the molecular sublayer, the mean temperatare p
files do not show any well-defined trends. One of the reasons is
that the normalisation parameter does not include ffeceof
Prandtl number explicitly. Interestingly, there existsistidct
difference between the pipe and channel flow temperature pro-
files from the logarithmic layer at higher Peclet numbers. On
the other hand, the data of figure 4 suggest an invariant-outer
normalized temperature profile fgr> 0.5.

Mesoscaling Analysis of Heat Transfer

The new inner scaled mean energy balance (equation (4)) at
large Peclet number (smai?) indicates that the leading or-
der balance is between moleculaffdsion and mean advection.
Near the location of the peak turbulent heat flux, howevér, al
three of the terms in equation (4) have the same order of mag-
nitude. This is similar to the property exhibited by the mean
momentum equation (see, Watial .[11]), indicating that a four
layer structure is also applicable to the mean energy emuati

X W RSP

» e

)
o
T
s
03

/

»,
.
&

8y

Figure 5: Mesoscaling of turbulent heat flux.
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Figure 6: Approximate mesoscaling of turbulent heat flux.

The goal now is to rescale equation (4) such that all the terms
are formallyO(2) in layer Ill. Following Weiet al.[11], a suc-
cessful rescaling will take the form

Yor = (Yo =Yom), T = (1/a) (0 =170, @)

wherey,m andY}, are the peak turbulent radial heat flux loca-
tion and value, respectively. Normalization of the mearrgyne
equation according to these variables results in

dr
A9

d’e*

o
The desired invariant form is attained, as all of the norpeali
terms are formallyO(1). Note that similar to the mean mo-
mentum equation, it is not necessary to rescale the mean tem-
perature to attain an invariant form that reflects the trug-ma
nitude ordering of terms. Note also thaif* /dy is identically
equal todT/dy,-, and thus the meso equation (8) transparently
matches the outer equation (1). This indicates that the scato
ing should be appropriate for the turbulent radial heat flatad
into the outer region as well. Figure 5 shows the mesoscaled
turbulent radial heat flux profiles. All of the profiles coltap
onto a single curve under the coordinate stretching pratibge
the meso-variableg, and Y. This scaling for turbulent radial
heat flux is apparently valid over an interior region the pdte
from inside the peak iff* to a zone near the centerline. In

+ +1=0.
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Figure 7: Mesoscaling of normalised mean temperature.

general, the theory indicates that this scaling should b ira

a domain surrounding,m(J,- = 0, = 0) having an extent of
A¥, = O(1). As noted previously, however, this scaling natu-
rally melds with outer scaling, and thus in these coordméte

is analytically predicted to extend to the centerline. \iittne
mesoscaling domain, no significantffdrences between pipe
and channel flow data are observed. For the present data sets,
this domain extends from 10V, < 32. The indicate scaling
does not hold in a narrow region near the wall. This is where
the scaling patchfiliated with inner length is known to hold.
This behaviour is also similar to the mesoscaling of Reysiold
shear stress as explained by \&eal.[12].

In order to evaluate the mesoscaled varialylesand ?, one
should require prior knowledge of the maximum turbulent ra-
dial heat flux value and its location. Due to the limitation of
precisely determining the value g, and Y}, Wei et al.[12]
proposed an alternative approach to express the ‘apprtxima
mesoscaling behaviour. This scaling is based upon theitignit
behaviours ofy,m and T}, which can be estimated for i
ciently high Peclet number as follows

Yom = O(1/c), T} = 1-O(c), )
and equation (7) then yields
Yo = 0Yo —O(1), T = (1/o)(T* -1)+O(1).  (10)

Thus an approximate mesoscaling can be constructed by plot-
ting (Y* —1)/o versusoy,, without necessarily knowing the
value ofy,m and},. As shown in figure 6, the turbulent heat
flux profiles nominally merge to a single curve, particulddy

the higher Peclet number. This approximate scaling is érgdec

to improve with increasing Peclet number. Like the heat flux
profile, the mesoscaled mean temperature profiles conglycin
support the theory, as the profiles of figure 7 increasingly co
lapse onto a single curve with increasing Peclet number.

Conclusions

The mesoscaling analysis of turbulent heat transfer has bee
successfully validated using existing DNS data. The presen
methodology scaled the radial heat flux, and the mean temper-
ature over a considerable domain centered about the petk hea
flux location. The present framework is analogous to thatluse
for the Reynolds shear stress by Veéeal.[12], and also rein-
forces their earlier findings for the turbulent heat flux,][1The
present analyses also suggests that, at high Peclet nutinder,

scaling characteristics of the temperature field beconrease
ingly similar to those of the momentum field at high Reynolds
number.
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